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Abstract

A model problem of a two-degrees-of-freedom (tdof) flutter is considered for an undamped system with random

temporal variations of its bifurcation parameter. The nominal system, i.e. one with the mean value of the bifurcation

parameter is assumed to be stable; however the above variations may occasionally bring the system temporarily into its

domain of dynamic instability. A procedure for predicting probability density function (PDF) of the peaks of the

corresponding intermittent response is outlined as based on parabolic approximation for the parameter variation in the

vicinity of its peaks. For the case of relatively slow parameter variations the equations of motion are reduced by

Krylov–Bogoliubov averaging to those describing static instability of the response amplitude. The basic relation between

peak values of the bifurcation parameter and of the corresponding response outbreak for the reduced system is therefore

available from previous studies of short-term static instability in a sdof system.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Common practice for most designs of machines and structures is to completely preclude static and/or
dynamic instability during long-term service, so that only stable designs are qualified as being acceptable. In
some cases however, this practice may result in too conservative impractical designs. This may happen, for
example, in cases of ‘‘temporary’’ or short-term instability due to very high short-term fluid loads such as
those produced by wind gusts during hurricanes or ocean waves in severe storms or in cases of aeroelasticity of
flight vehicles operating close to their instability boundary. In such cases the system may be designed to
operate within its stability domain as long as ‘‘nominal’’ design parameters are considered. However, if the
parameters may experience random temporal variations around their nominal or expected values, the system
may become ‘‘temporary unstable’’ occasionally whenever its instability boundary is crossed. As long as
complete elimination of such brief excursions into the instability domain may lead to impossible or impractical
design the corresponding short-time outbreaks in response should be analyzed to evaluate the system’s
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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reliability. In particular, predicting the probability density function (PDF) of the response peaks may be
important for estimating corresponding damage accumulation in low-cycle fatigue due to the outbreaks.

The basic approach to such prediction has been outlined in [1,2] for the cases of static and dynamic
instability respectively in a single-degree-of-freedom (sdof) system. The approach relies on the following
approximation of a stationary zero-mean random process g(t) with unit standard deviation in the vicinity of its
peak which exceeds a given level u [3,4], that is after upcrossing level u at time instant t ¼ 0:

g t=u
� �

ffi uþ 1=u
� �

Bt� l2t2
�
2

� �
so that g tð Þ ffi uþ Bt� u=2

� �
ltð Þ2

for t 2 0; 2B
�
l2u

� �
and maxtg tð Þ ¼ g B

�
l2u

� �
¼ gp ¼ uþ B2

�
2l2u. ð1Þ

Here subscript ‘‘p’’ is used for peak values of random processes, z is the random slope of g(t) at the instant of
upcrossing and l2 ¼ s2_g ¼

R1
�1

o2FggðoÞdo=
R1
�1

Fgg oð Þdo where Fgg oð Þ is power spectral density (PSD) of
g(t) so that l is a mean frequency of g(t). Thus the parabolic approximation (1) implies that the random
process g(t) is regarded as deterministic within the high-level excursion of duration tf ¼ ltf ¼ 2B=lu above
level u; during this time interval it depends just on its initial slope z at upcrossing which is regarded as a
random variable for the excursion. Furthermore, the instant of downcrossing tf is clearly obtained as a second
root of equation g(t) ¼ u, the first one being t ¼ 0. This probabilistic description may be used together with the
solution for the transient response within the instability domain.

A sdof system with randomly varying stiffness as described by the approximation (1) has been considered in
Ref. [1] accordingly; the PDF of peaks in the intermittent response was predicted using a numerical solution
for the transient response during outbreak. The case of temporary dynamic instability in a sdof system with
randomly varying apparent damping factor has been studied in Ref. [2]; using Krylov–Bogoliubov (KB)
averaging [5] the problem has been reduced to a first-order equation for the response amplitude which
permitted to obtain an explicit analytical solution for the response (and thus for the PDF of its peaks). This
analytical solution has been extended later to a certain ‘‘axisymmetric’’ two-degrees-of-freedom (tdof) system
through the use of a single complex generalized displacement [6].

In this Short Communication a model problem is considered of a ‘‘classical’’ flutter in a linear undamped
tdof system with potential dynamic instability due to coalescing or merging of its natural frequencies [7].
Through the use of KB-averaging the problem of transient motion due to short-term dynamic instability is
reduced to that due to short-term static instability for slowly varying amplitude—that is to the problem solved
in Ref. [1] by numerical integration for the transient response.

2. Analysis

A model tdof system loaded by a nonconservative force is governed by equations of motion

€X 1 þ O2
1X 1 þ gX 2 ¼ 0; €X 2 þ O2

2X 2 � gX 1 ¼ 0, (2a,b)

where dots denote differentiation over time t. This system is known to become dynamically unstable at
sufficiently high value of the bifurcation parameter g. The condition for this flutter-type instability in the
undamped system (2) is that of coalescing or merging of natural frequencies of the tdofs. It will be assumed
that the mean value of the bifurcation parameter belongs to the stability domain whereas its random temporal
variations are sufficiently slow, thereby permitting transformations that should facilitate analysis of the
transient response. Denoting

X� ¼ X 1 � X 2; L2 ¼
1

2
O2

2 þ O2
1

� �
; s ¼

O2
2 � O2

1

O2
2 þ O2

1

(3a2c)

(it will be assumed for definiteness that O24O1) Eqs. (2) may be rewritten for the transformed generalized
displacements as

€Xþ þ L2Xþ ¼ sL2 þ g
� �

X�; €X� þ L2X� ¼ sL2 � g
� �

Xþ. (4a,b)

Assume now that the coefficients in RHSs of both Eqs. (4) are proportional to a small parameter so that the
asymptotic method of KB-averaging can be applied [5]. As long as all actual parameters have finite albeit
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small values it may be assumed that s51; g5L2 along with l5O, the latter condition being that of slow
variations of the bifurcation parameter as mentioned before (zero-mean part of the variations will be
eventually represented via process g(t) as present in Eq. (1)).

A solution to the equation set (Eq. (4)) may be sought in the form

Xþ tð Þ ¼ Xþc tð Þ cosLt; _Xþ tð Þ ¼ �LXþc tð Þ sinLt

X� tð Þ ¼ X�s tð Þ sin Lt; _X� tð Þ ¼ LX�s tð Þ cosLt. ð5a2dÞ

From Eqs. (5a,b) we may single out X+c and differentiate. Then Xþc
_Xþc ¼ d=dt

� �
X 2
þ þ

_X
2

þ

.
L2

� �
¼

_Xþ
�
L2

� �
€Xþ þ L2Xþ
� �

and substituting RHS of Eq. (4a) yields _Xþc ¼ �L�1 sin Lt sL2 þ g
� �

X�
� �

.

The RHS of the resulting equation may be approximated by its average over ‘‘rapid’’ time within the
response period 2p/L. The above operations are then repeated for the second response amplitude X�s as
defined by the lower row of relations (5). Thus the following pair of first-order ODEs is obtained for slowly
varying response amplitudes:

_Xþc ¼ � sL=2þ g=2L
� �

X�s and _X�s ¼ sL=2� g=2L
� �

Xþc. (6a,b)

Two ODEs (6a,b) may be transformed to an equivalent single second-order ODE for any one of the two
amplitudes. Thus

€Xþc þ sL=2
� �2

� g=2L
� �2h i

Xþc ¼ 0. (7)

It is clearly seen that the equilibrium solution Xþc � 0 to Eq. (7) for the response amplitude is unstable
statically if g4g� ¼ sL2: This critical value of the bifurcation parameter as obtained by asymptotic analysis
clearly coincides with the exact condition for dynamic instability of the original system (2) which corresponds
to coalescing or merging of the system’s natural frequencies as obtained from the corresponding characteristic
equation [7].

Upon arriving to system (7) with ‘‘slow’’ time it is necessary now to ‘‘remember’’ that the bifurcation
parameter g is actually time-variant. Separating mean value and zero-mean part of its square denoted by
angular brackets and subscript ‘‘zero’’, respectively, we may rewrite the ODE as

€Xþc þ D2 � q tð Þ
� �

Xþc ¼ 0 where D2 ¼ sL=2
� �2

� g=2L
� �2

; q tð Þ ¼ g20 tð Þ
�
2Lð Þ2. (8)

It is assumed that D240 so that the nominal or mean system is stable. The zero-mean process q(t) may now
be scaled to its standard deviation sq by introducing process g tð Þ ¼ q tð Þ

�
sq with unit standard deviation. The

parabolic approximation (1) may be used for this process, with scaled instability threshold defined as
u ¼ D2

�
sq. Upon introducing transformed local time t ¼ lðt� tuÞ with origin at the instant of upcrossing tu

Eq. (8) is transformed to

X 00þc þ ðD=lÞ
2
�

Bt
lu
þ t2=2

h i
Xþc ¼ 0, (9)

where primes denote differentiation over t.
Eq. (9) coincides (with just slight differences in notation) with the equation for static instability of a sdof

system—one that has been solved numerically in Ref. [1] for its transient response during short-term outbreak.
The results provided the relation between the peak value of the response (it would be amplitude in the present
case) and that of the process g(t). Thus a reliability study of system (2) which is prone to short-term or
temporary instability—e.g. analysis of the PDF of response peaks for evaluating low-cycle fatigue, or
predicting first-passage failure—is reduced to analysis of relevant statistics of temporal variations in the
bifurcation parameter. One favorable difference from the case of a damped system as considered in Eq. (1)
should be mentioned here. Namely, no extrapolation is required for approximation (1) beyond final instant
tf ¼ 2B=lu of downcrossing zero level by g(t). At this instant peak of first derivative of X 0þc is clearly attained
but not of Xþc itself in general; however for the present case it does not matter as long as X 0þc ¼ X�s and the
latter variable satisfies the same ODE (8).
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3. Conclusions

A model problem of a tdof flutter due to coalescing or merging of natural frequencies at high level of
nonconservative loading has been considered for an undamped system with random temporal variations of its
bifurcation parameter. Whilst the nominal system, i.e. one with mean value of the bifurcation parameter is
assumed to be stable, the above variations may occasionally bring the system temporarily into its domain of
dynamic instability. Procedure for predicting PDF of the peaks in the resulting intermittent response is
outlined as based on parabolic approximation of the parameter variation in the vicinities of its peaks together
with solution for transient amplitude response of the system during short-term instability. Solution to the
latter problem of transient response is reduced using KB-averaging, to previously obtained numerical solution
for transient response of a sdof system during short-term static instability. The results may be used for
predicting low-cycle fatigue in marginally unstable structures, i.e. those with relatively rare and brief potential
excursions into domain of dynamic instability.

A certain comment on potential extension of the basic model seems appropriate here. Namely, in some
applications nonconservative terms in Eqs. (2) may contain additional different constant coefficients so that
coefficient g in RHSs should be replaced by g1 and g2 in the first and second equations (2), respectively; see
example of this case in Chapter 5 of the book [8]—tdof flutter of a row of cylinders in a cross flow of fluid. Direct
stability analysis of the corresponding characteristic equation shows that only product of these coefficients does
enter the condition for neutral stability derived as that for merging of natural frequencies; this (exact) condition
may be written as ~g� ¼ sL2 where ~g ¼

ffiffiffiffiffiffiffiffiffi
g1g2
p

and star subscript corresponds to critical value at the neutral
stability boundary. On the other hand, repeating the above KB-averaging analysis we obtain the same
(approximate) results as before if g is replaced by the arithmetic mean ḡ ¼ 1

2
g1 þ g2
� �

so that ḡ� ¼ sL2. It is clearly
seen that the exact and approximate stability conditions coincide when g1 ¼ g2; otherwise the approximate
condition provides the conservative estimate for stability as long as ḡ4~g for g1ag2. Thus the simple procedure
for transient response analysis for the case of short-term instability should also be conservative if both actual
coefficients g1 and g2 are replaced by their arithmetic mean values in Eqs. (2) (and both are proportional to the
same function of time as is the case with the above potential application described in Ref. [8]). The above
considerations are also important for the case where the only available data on g1 and g2 are obtained from
stability tests where just onset of instability is observed and thus only their product would be known.

A final comment should be made here regarding an important potential limitation in applicability of the
present analysis to linearized model of nonlinear systems. A thorough study of influence of nonlinearities on
aeroelastic behavior of flight vehicles is presented in Refs. [9,10]. First of all, quantitative results of the present
analysis may not be directly applicable to systems with nonsmooth nonlinearities, such as those due to gaps,
pre-stress, etc. Furthermore, the linearized model may not be applicable in case of smooth ‘‘softening’’
nonlinearity(ies) which may lead to a stepwise ‘‘jump’’ of the system from equilibrium state to a limit cycle
(such nonlinearities were called ‘‘evil’’ in Ref. [10]). On the other hand, smooth ‘‘stiffening’’ nonlinearity
(which is called ‘‘good’’ in Ref. [10]) may by itself restrict growth of response amplitude in case of ‘‘long-term’’
instability whereas in case of the ‘‘short-term’’ instability it may be of minor importance provided that
response remains sufficiently small during its transient outbreaks; it is the latter case for which the present
linearized model is quantitatively adequate.
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